Sztuczna inteligencja
Programy czy algorytmy używane do klasyfikacji lub generowania danych. Termin najczęściej odnosi się do technologii opartych o sieci neuronowe i to na nich będziemy się skupiać.
Sieci neuronowe
Podstawowa zasada działania sieci neuronowych jest dość prosta. System składa się z wejść, perceptronów, przez które dane są przetwarzane i wyjścia. To, w jaki sposób perceptrony będą dane przetwarzać, zależy od budowy sieci oraz procesu uczenia. W dużym skrócie proces uczenia polega na tym, że dostarczany bardzo, ale to bardzo dużo przykładowych wejść, oraz to, co dla każdego z nich chcielibyśmy otrzymać. Następnie algorytm stara się tak dostosować perceptrony, przez które dane są przetwarzane, aby rzeczywiste wyniki były jak najbliżej tych oczekiwanych.
Bias
Jednym z problemów ze sztuczną inteligencją, jest to, że ponieważ stara się ona odtworzyć dane użyte do nauki, powstały model powinien odzwierciedlać uprzedzenia osób tworzących wejście. Co gorsza, jako że dobre modele potrzebują ogromnej ilości danych wejściowych, ręczna moderacja tych danych byłaby niezwykle trudna.
Przygotowany przez Conora Mc Cabe zestaw testów prezentuje poziomy toksyczności w tekstach generowanych przez GPT-3 oraz InstructGPT. Teksty, które odnosiły się do społeczności LGBT+, generowały zauważalnie bardziej toksyczne odpowiedzi. Było to szczególnie widoczne, gdy tożsamość seksualna połączona była z rasą i tak najbardziej toksyczne wyjścia uzyskaliśmy dla przykładu homoseksualnej, czarnej osoby[1].
Przypisy
- ↑ Medium, Conor Mc Cabe, LGBTQ+ bias in GPT-3